A Fast Algorithm for Matrix Eigen-decompositionn
نویسندگان
چکیده
We propose a fast stochastic Riemannian gradient eigensolver for a real and symmetric matrix, and prove its local, eigengap-dependent and linear convergence. The fast convergence is brought by deploying the variance reduction technique which was originally developed for the Euclidean strongly convex problems. In this paper, this technique is generalized to Riemannian manifolds for solving the geodesically non-convex problem of finding a group of top eigenvectors of such a matrix. We first propose the general variance reduction form of the stochastic Riemannian gradient, giving rise to the stochastic variance reduced Riemannian gradient method (SVRRG). It turns out that the operation of vector transport is necessary in addition to using Riemannian gradients and retraction operations. We then specialize it to the problem in question resulting in our SVRRGEIGS algorithm. We are among the first to propose and analyze the generalization of the stochastic variance reduced gradient (SVRG) to Riemannian manifolds. As an extension of the linearly convergent VR-PCA, it is significant and nontrivial for the proposed algorithm to theoretically achieve a further speedup and empirically make a difference, due to our respect to the inherent geometry of the problem.
منابع مشابه
Fast Eigen Decomposition for Low-Rank Matrix Approximation
In this paper we present an efficient algorithm to compute the eigen decomposition of a matrix that is a weighted sum of the self outer products of vectors such as a covariance matrix of data. A well known algorithm to compute the eigen decomposition of such matrices is though the singular value decomposition, which is available only if all the weights are nonnegative. Our proposed algorithm ac...
متن کاملCalculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms
The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...
متن کاملEvaluation of a Fast Algorithm for the Eigen-Decomposition of Large Block Toeplitz Matrices with Application to 5D Seismic Data Interpolation
We present a fast 5D (frequency and 4 spatial axes) reconstruction method that uses Multichannel Singular Spectrum Analysis / Cazdow algorithm. Rather than embedding the 4D spatial volume in a Hankel matrix, we propose to embed the data into a block Toeplitz form. Rank reduction is carried out via Lanczos bidiagonalization with fast block Toeplitz matrix-times-vector multiplications via 4D Fast...
متن کاملFast System Matrix Calculation in CT Iterative Reconstruction
Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...
متن کاملFast Spectral Clustering Using Autoencoders and Landmarks
In this paper, we introduce an algorithm for performing spectral clustering efficiently. Spectral clustering is a powerful clustering algorithm that suffers from high computational complexity, due to eigen decomposition. In this work, we first build the adjacency matrix of the corresponding graph of the dataset. To build this matrix, we only consider a limited number of points, called landmarks...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017